03780nas a2200289 4500000000100000008004100001260001200042653002400054653002200078653002300100653002400123653001200147653002100159653002100180653003500201653002400236653002500260653001900285100001500304700001300319700001300332700001500345700001100360245007800371520302700449022001403476 2024 d c06/202410aBizarre capillaries10aCapillary density10aCapillary dropouts10aDilated capillaries10aleprosy10aLeprosy reaction10aMicrovasculature10aNail fold capillaroscopy (NFC)10aSubpapillary plexus10aTortuous capillaries10aTrophic ulcers1 aAggarwal B1 aGandhi V1 aSingal A1 aAggarwal A1 aSaha S00aNail fold capillaroscopy in leprosy: Unveiling the microvascular changes.3 a
Background: Leprosy, a chronic infectious disease, is associated with various nail changes. Its etiopathogenesis is multifaceted, with microvascular damage being crucial. Nail fold capillaroscopy (NFC) emerges as a novel tool for detecting early vascular deficits in leprosy. The study aimed to assess and provide a complete clinical characterization of NFC changes in leprosy patients.
Methods: It is an observational cross-sectional study, done over a period of 1.5 year (January 2021 to august 2022) in a tertiary care hospital, encompassing 60 patients diagnosed with leprosy (18-60 years). After obtaining informed consent; detailed history, complete cutaneous and neurological examinations were conducted. All fingernails and toenails were examined for clinical changes. Subsequently, onychoscopy was performed using USB type of video-dermatoscope (Model AM7115MZT Dino-lite), a non-invasive tool. This was followed by NFC which was done for all fingernails and images were recorded by single operator, which were then assessed for quantitative and qualitive changes and statistical analysis was conducted using SPSS v20, with mean capillary density compared using Student's t-test, morphological change frequencies assessed by proportions, and group comparisons made using Chi-square or Fischer exact tests, with a significance threshold of p < 0.05.
Results: Among the 60 patients, 39 were in the lepromatous group, which included both borderline lepromatous (BL) and lepromatous leprosy (LL) patients, and 17 were in the tuberculoid group, which included borderline tuberculoid (BT) leprosy patients; 23.3 % had Type 1 reactions, and 18.3 % had Type 2 reactions. Nail fold capillaroscopy (NFC) showed microvasculature changes in 93.3 % of patients. The average capillary density was 6.8 ± 1.5 capillaries per mm, with the lepromatous group having a lower density (6.5 ± 1.09) compared to the tuberculoid group (7.0 ± 0.86). The most common NFC changes in the tuberculoid group were tortuous capillaries (70 %), capillary dropouts, and dilated capillaries (both 64.7 %). In the lepromatous group, capillary dropouts (82 %) were most frequent, followed by tortuous (69 %), receding (69 %), and dilated capillaries (66 %). A dilated and prominent subpapillary plexus was more common in the lepromatous group (35 %, p = 0.04). Patients with trophic changes in the lepromatous group had more capillary dropouts and bizarre capillaries. Capillary dropouts, dilated capillaries, and visible subpapillary venous plexus were more prevalent in patients with Type 2 reactions.
Conclusion: NFC changes are prevalent in both tuberculoid and lepromatous leprosy, which may be an indicator of peripheral vascular compromise and trophic changes, especially in lepromatous leprosy. NFC can be an auxiliary tool for detecting microvascular abnormalities in leprosy patients.
a1095-9319