02622nas a2200181 4500000000100000008004100001260001200042100001300054700001600067700001400083700001500097245025600112856010800368300001200476490000700488520193100495022001402426 2024 d c04/20241 aAntony B1 aNagarajan C1 aDevaraj D1 aSubbaraj G00aA Systemic Review and Meta-analysis on Natural Resistance-associated Macrophage Protein 1 (3'-Untranslated Region) and Nucleotide-binding Oligomerization Domain-2 (rs8057341) Polymorphisms and Leprosy Susceptibility in Asian and Caucasian Populations. uhttps://journals.lww.com/ijmy/fulltext/2024/13020/a_systemic_review_and_meta_analysis_on_natural.1.aspx a115-1250 v133 a
The current meta-analysis aims to explore the potential correlation between natural resistance-associated macrophage protein 1 (NRAMP1) (3'-Untranslated region [3'-UTR]) and nucleotide-binding oligomerization domain-2 (NOD2 [rs8057341]) gene polymorphisms and their association with leprosy susceptibility in both Asian and Caucasian populations. Datas were retrieved from case control studies with NOD 2 and NRAMP 1 gene polymorphism associated with leprosy disease. Leprosy emerges as a particularly distinctive ailment among women on a global scale. The NRAMP1 (3'-UTR) and NOD2 (rs8057341) genetic variations play a crucial role in the progression of leprosy. A systematic review of relevant case-control studies was conducted across several databases, including ScienceDirect, PubMed, Google Scholar, and Embase. Utilizing MetaGenyo and Review Manager 5.4 Version, statistical analyses were carried out. Nine case-control studies totaling 3281 controls and 3062 leprosy patients are included in the research, with the objective of examining the potential association between NRAMP1 (3'-UTR) and NOD2 (rs8057341) gene polymorphisms and leprosy risk. The review methodology was registered in PROSPERO (ID520883). The findings reveal a robust association between NRAMP1 (3'-UTR) and NOD2 (rs8057341) gene polymorphisms and leprosy risk across various genetic models. Although the funnel plot analysis did not identify publication bias, bolstering these findings and elucidating potential gene-gene and gene-environment interactions require further comprehensive epidemiological research. This study identified a strong correlation between polymorphisms in the NOD2 (rs8057341) genes and susceptibility to leprosy across two genetic models. Further comprehensive epidemiological investigations are warranted to validate these findings and explore potential interactions between these genes and environmental factors.
a2212-554X